964 resultados para caloric restriction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene−environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the 1H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. 1H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling—two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.—Summermatter, S., Mainieri, D., Russell, A. P., Seydoux, J., Montani, J. P., Buchala, A., Solinas, G., Dulloo, A. G. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d +), respectively. The NADPH-d-negative (NADPH-d -) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d + neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 +/- 6.25) than in the CR (92.37 +/- 11.6) and C (111.68 +/- 15.26) groups. The density of the NADPH-d + neurons was higher in the SR group (44.90 +/- 5.88) than in the C (35.75 +/- 1.6) and RC (39.14 +/- 7.02) groups. The density of NADPH-d - neurons was higher in the CR (49.73 +/- 12.08) and C (75.64 +/- 17.05) groups than in the SR group (33.82 +/- 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d + or NADPH-d -, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d - neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d - (57.62%) neurons was lower. As NADPH-d - neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during aging. The cell body dimensions (mu m(2)) were not altered by aging or CR. Thus. CR had a protective effect on myenteric neurons during aging. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d +), respectively. The NADPH-d-negative (NADPH-d -) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d + neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 +/- 6.25) than in the CR (92.37 +/- 11.6) and C (111.68 +/- 15.26) groups. The density of the NADPH-d + neurons was higher in the SR group (44.90 +/- 5.88) than in the C (35.75 +/- 1.6) and RC (39.14 +/- 7.02) groups. The density of NADPH-d - neurons was higher in the CR (49.73 +/- 12.08) and C (75.64 +/- 17.05) groups than in the SR group (33.82 +/- 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d + or NADPH-d -, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d - neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d - (57.62%) neurons was lower. As NADPH-d - neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during aging. The cell body dimensions (mu m(2)) were not altered by aging or CR. Thus. CR had a protective effect on myenteric neurons during aging. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and secretion in youth. Forty-five obese adolescent boys were randomly assigned to one of three 3-month interventions: AE, RE, or a nonexercising control. Abdominal fat was assessed by magnetic resonance imaging, and intrahepatic lipid and intramyocellular lipid were assessed by proton magnetic resonance spectroscopy. Insulin sensitivity and secretion were evaluated by a 3-h hyperinsulinemic-euglycemic clamp and a 2-h hyperglycemic clamp. Both AE and RE prevented the significant weight gain that was observed in controls. Compared with controls, significant reductions in total and visceral fat and intrahepatic lipid were observed in both exercise groups. Compared with controls, a significant improvement in insulin sensitivity (27%) was observed in the RE group. Collapsed across groups, changes in visceral fat were associated with changes in intrahepatic lipid (r = 0.72) and insulin sensitivity (r = -0.47). Both AE and RE alone are effective for reducing abdominal fat and intrahepatic lipid in obese adolescent boys. RE but not AE is also associated with significant improvements in insulin sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low caloric intake (caloric restriction) can lengthen the life span of a wide range of animals and possibly even of humans. To understand better how caloric restriction lengthens life span, we used genetic methods and criteria to investigate its mechanism of action in the nematode Caenorhabditis elegans. Mutations in many genes (eat genes) result in partial starvation of the worm by disrupting the function of the pharynx, the feeding organ. We found that most eat mutations significantly lengthen life span (by up to 50%). In C. elegans, mutations in a number of other genes that can extend life span have been found. Two genetically distinct mechanisms of life span extension are known: a mechanism involving genes that regulate dauer formation (age-1, daf-2, daf-16, and daf-28) and a mechanism involving genes that affect the rate of development and behavior (clk-1, clk-2, clk-3, and gro-1). We find that the long life of eat-2 mutants does not require the activity of DAF-16 and that eat-2; daf-2 double mutants live even longer than extremely long-lived daf-2 mutants. These findings demonstrate that food restriction lengthens life span by a mechanism distinct from that of dauer-formation mutants. In contrast, we find that food restriction does not further increase the life span of long-lived clk-1 mutants, suggesting that clk-1 and caloric restriction affect similar processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.